Aplicación del algoritmo del bosque aleatorio a un modelo de clasificación de la anemia en niños peruanos

Autores/as

DOI:

https://doi.org/10.5281/zenodo.12795047

Palabras clave:

algoritmos, anemia, área bajo la curva, niño

Resumen

Introducción: en el Perú, durante los últimos años se observa una disminución de la pobreza. No obstante, la prevalencia de anemia continúa alta; afecta a 40,00 % de los niños de seis a 35 meses de edad.

Objetivo: identificar los factores de riesgo o pronósticos en la aparición de anemia en niños peruanos.

Métodos: se realizó un estudio observacional transversal a partir de la base de datos creada para la Encuesta Demográfica y de Salud Familiar, por el Instituto Nacional de Estadística e Informática durante los años 2015-2019. La población estuvo constituida por 57 410 niños de seis a 35 meses de edad, que contaban con exámenes de hemoglobina. Se seleccionaron 33 variables independientes y se plantearon seis procedimientos con el algoritmo del bosque aleatorio. Se obtuvieron valores de los indicadores área bajo la curva, especificidad y sensibilidad.

Resultados: el procedimiento que mejor predijo la presencia de anemia, con valores para los indicadores de especificidad (63,62 %) y sensibilidad (65,88 %) más similares, utilizó datos balanceados con reajuste de los parámetros, reducción de la cantidad de árboles y selección de variables.

Conclusiones: las cinco variables independientes más importantes para el modelo fueron: edad del niño, altitud del conglomerado, número de visitas prenatales por embarazo, momento del primer control prenatal y talla de la madre. El estudio aportó evidencias científicas acerca del uso de los algoritmos de aprendizaje automático para predecir la aparición de anemia en función de factores de riesgo comunes

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Bernardo Céspedes Panduro, Lima, República del Perú.

Universidad Nacional Mayor de San Marcos.

Citas

Instituto Nacional de Estadística e Informática (Perú). Encuesta Demográfica y de Salud Familiar. ENDES 2020 [Internet]. Lima: Instituto Nacional de Estadística e Informática; 2021 [citado 14 May 2021]. Disponible en: https://proyectos.inei.gob.pe/endes/2020/INFORME_PRINCIPAL_2020/INFORME_PRINCIPAL_ENDES_2020.pdf

Ministerio de Salud (Perú). Plan nacional para la reducción y control de la anemia materno infantil y la desnutrición crónica infantil y la desnutrición crónica infantil en el Perú: 2017-2021 [Internet]. Lima: MINSA; 2021 [citado 12 Abr 2017]. Disponible en: https://cdn.www.gob.pe/uploads/document/file/322898/Plan_nacional_para_la_reducci%C3%B3n_y_control_de_la_anemia_materno_infantil_y_la_desnutrici%C3%B3n_cr%C3%B3nica_infantil_en_el_Per%C3%BA__2017___2021._Documento_t%C3%A9cnico20190621-17253-s9ub98.pdf

Ministerio de Desarrollo e Inclusión Social (Perú). Plan multisectorial de lucha contra la anemia [Internet]. Lima: MIDIS; 2018 [citado 27 May 2018]. Disponible en: https://cdn.www.gob.pe/uploads/document/file/307159/plan-multisectorial-de-lucha-contra-la-anemia-v3.pdf

Sanou D, Ngnie-Teta I. Risk factors for anemia in preschool children in Sub-Saharan Africa. En: Silverberg DS, editor. Anemia [Internet]. Rijeka: InTech; 2012. p. 171-90. [citado 14 Feb 2012]. Disponible en: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1040.3665&rep=rep1&type=pdf

Balarajan Y, Ramakrishnan U, Özaltin E, Shankar AH, Subramanian SV. Anaemia in low-income and middle-income countries. The Lancet [Internet]. Ene 2012 [citado 3 Ago 2012];378(9809):2123-35. Disponible en: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1023.2792&rep=rep1&type=pdf

Saaka M, Galaa SZ. How is dietary diversity related to haematological status of preschool children in Ghana? Food Nutr Res [Internet]. Jun 2017 [citado 14 Jun 2017];61(1):1333389. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5475327/pdf/zfnr-61-1333389.pdf

Siekmans K, Receveur O, Haddad S. Can an integrated approach reduce child vulnerability to anaemia? Evidence from three African countries. PLoS ONE [Internet]. 2014 [citado Mar 2014];9(3):e90108. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943899/pdf/pone.0090108.pdf

Véliz-Capuñay C. Aprendizaje automático. Análisis para la minería de datos y big data. Lima: Pontificia Universidad Católica del Perú; 2018.

Mahboob T, Irfan S, Karamat A. A machine learning approach for student assessment in e-learning using Quinlan’s C4.5, naive bayes and random forest algorithms. En: Proceedings of the 2016 19th International MultiTopic Conference, INMIC 2016. p. 1-8.

Ezzati M, López AD, Rodgers A, Murray CJL, editores. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Vol. 1 [Internet]. Geneva: WHO; 2004. [citado 18 Oct 2014]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/42770/9241580313_eng.pdf

Durán-Romo B. Comparación de metodologías de imputación aplicadas a ingresos laborales de la ENOE. Realidad, Datos y Espacio. Revista Internacional de Estadística y Geografía [Internet]. Dic 2019 [citado 18 Dic 2019];10(3):5-27. Disponible en: https://rde.inegi.org.mx/wp-content/uploads/2019/09/RDE29_art01_2c.pdf

Fernández-Vásquez RF. Regresión bayesiana con enlaces asimétricos para la clasificación de clientes con propensión a caer en mora en una entidad bancaria. Lima: Universidad Nacional Agraria La Molina; 2018 [citado 20 Feb 2018]. Disponible en: http://repositorio.lamolina.edu.pe/bitstream/handle/20.500.12996/3093/fernandez-vasquez-richard-fernando.pdf?sequence=3&isAllowed=y

Perez-Sánchez JM, Negrín-Hernández MA, García-García C, Gómez-Déniz E. Bayesian asymmetric logit model for detecting risk factors in motors ratemaking. Astin Bulletin. 2014;44(2):445-57.

Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, et al. Comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics [Internet]. 2009 [citado 20 May 2014];10:213. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724423/pdf/1471-2105-10-213.pdf

Kroese DP, Botev ZI, Taimre T, Vaisman R. Data science and machine learning. Mathematical and statistical methods. Boca Ratón: CRC Press; 2019.

Genuer R, Poggi JM. Random forest with R. En: Genuer R, Poggi JM. Random forest. London: Springer Nature, 2020. p. 33-55.

Khan JR, Chowdhury S, Islam H, Raheem E. Machine learning algorithms to predict the childhood anemia in Bangladesh. Journal of Data Science [Internet]. 2019 [citado 20 May 2019];17(1)195-218. Disponible en: https://www.jds-online.com/files/01%20No.09%20310%20Machine%20learning%20algorithms%20to%20predict%20the%20childhood%20anemia%20in%20Bangladesh.pdf

Alghamdi M, Al-Mallah M, Keteyian S, Brawner C, Ehrman J, Sakr S. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford exercise testing (FIT) project. PloS One [Internet]. 2017 [citado 24 Jul 2017];12(7):e0179805. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524285/pdf/pone.0179805.pdf

Meena K, Tayal DK, Gupta V, Fatima A. Using classification techniques for statistical analysis of anemia. Artif Intell Med. Mar 2019;94:138-52.

Khare S, Kavyashree S, Gupta D, Jyotishi A. Investigation of nutritional status of children based on machine learning techniques using Indian demographic and health survey data. Proc Comp Sci [Internet]. 2017 [citado 24 Jul 2017]115:338-49 Disponible en: https://reader.elsevier.com/reader/sd/pii/S187705091731894X?token=5D7B79CF5C71745C89B20E2D46EFE7FA649FA3E9ED92AED1E96C5BAD5AB8768649C171CDB95401D47D44C2C9ECCA1516yoriginRegion=us-east-1yoriginCreation=20220607134821

Santos-Da Silva LL, Wahib-Fawzi W, Augusto-Cardoso M. Factors associated with anemia in young children in Brazil. Plos One [Internet] 2018 [citado 25 Sep 2018];13(9):e0204504. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155550/pdf/pone.0204504.pdf

Gebremeskel MG, Tirore LL. Factors associated with anemia among children 6-23 months of age in Ethiopia: a multilevel analysis of data from the 2016 Ethiopia Demographic and Health Survey. Pediatr Health Med Ther [Internet]. 2020 [citado 27 Jul 2020];11:347-57. Disponible en: https://www.dovepress.com/getfile.php?fileID=61509

Molla A, Egata G, Mesfin F, Arega M, Getacher L. Prevalence of anemia and associated factors among infants and young children aged 6-23 months in Debre Berhan Town, North Shewa, Ethiopia. J Nutr Metab [Internet]. 2020 [citado 27 Jul 2020];2020:2956129. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768586/pdf/jnme2020-2956129.pdf

Shenton LM, Jones AD, Wilson ML. Factors associated with anemia status among children aged 6-59 months in Ghana, 2003-2014. Matern Child Health J [Internet]. Abr 2020 [citado 21 Abr 2020];24(4):483-502. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078144/pdf/10995_2019_Article_2865.pdf

Manikandan AD. Factors Associated with anemia among women and children belonging to the scheduled castes and scheduled tribes in degraded districts of India. Indian Development Policy Review [Internet]. 2020 [citado 21 Abr 2020];1(1):43-66. Disponible en: https://www.esijournals.com/image/catalog/Journal%20Paper/IDPR/No%201%20(2020)/4_Manikandan.pdf

Descargas

Publicado

19-09-2022

Cómo citar

1.
Céspedes Panduro B. Aplicación del algoritmo del bosque aleatorio a un modelo de clasificación de la anemia en niños peruanos. Mediciego [Internet]. 19 de septiembre de 2022 [citado 23 de diciembre de 2024];28(1):e3471. Disponible en: https://revmediciego.sld.cu/index.php/mediciego/article/view/3471

Número

Sección

Artículo original

Artículos más leídos del mismo autor/a