Automated detection of determining factors of pregnancy in adolescence
Keywords:
automation, pregnancy in adolescence, risk factors, statistical databasesAbstract
Introduction: pregnant adolescents are less likely to form stable romantic relationships and are more likely to suffer emotional disorders. They are also more susceptible to various complications during pregnancy and childbirth.
Objective: to evaluate machine learning techniques to determine risk factors for teenage pregnancy.
Methods: a research with a causal correlational design was carried out. The data was obtained from the Demographic and Family Health Survey - ENDES 2021 National and Departmental, which covered the years 2018 to 2020. At the time of the interviews, their database contained information on 16,825 Peruvian adolescent women aged 12 to 19 years, who constituted the study universe. Nine algorithms were implemented: support vector machine, binary logistic regression, decision tree, adaptive boosting (AdaBoost), gradient boosting, extreme gradient boosting (XGBoost), extremely random trees (ExtraTrees), bootstrap aggregation, and random forest. Their metrics were considered as variables to be taken into account in the evaluation, precision, and the area under the curve.
Results: The most accurate algorithm was the random forest (0.965825), followed by gradient boosting (0.963744), decision tree, and support vector machines (0.963155, both).
Conclusions: the random forest was the most accurate technique; in addition to the identification of the factors in question, the three most important ones were distinguished. This study is a valuable precedent for the application of machine learning techniques in the prediction of various variables necessary to improve public management
Downloads
References
Instituto Nacional de Estadística e Informática. Encuesta Demográfica y de Salud Familiar - ENDES 2021 Nacional y Departamental [Internet]. Lima: INEI; 2022 [citado 2 Sep 2024]. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1838/pdf/Libro.pdf
Buitrago-Ramírez F, Ciurana-Misol R, Fernández-Alonso MC, Tizón JL; Miembros del Grupo de Salud Mental. Prevención de los trastornos de la salud mental. Embarazo en la adolescencia. Aten Primaria [Internet]. Oct 2022 [citado 2 Sep 2024];54 Supl 1: 102494. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC9705218/pdf/main.pdf
Hernández-Cordero AL, Gentile A, Santos-Díaz E. Perspectivas teóricas para el análisis de la maternidad adolescente. Barataria [Internet]. 2019 [citado 2 Sep 2024];26:135-54. Disponible en: https://revistabarataria.es/web/index.php/rb/article/download/399/710/1546
Ranjbar A, Jahromi MS, Boujarzadeh B, Roozbeh N, Mehrnoush V, Darsareh F. Pregnancy, childbirth and neonatal outcomes associated with adolescent pregnancy. Gynecol Obstetr Clin Med [Internet]. Jun 2023 [citado 2 Sep 2024];3(2):100-5. Disponible en: https://www.sciencedirect.com/science/article/pii/S2667164623000131
Azimirad A. Pregnancy in adolescence: It is time to get ready for generations Z and Alpha. Gynecol Obstetr Clin Med [Internet]. Jun 2023 [citado 2 Sep 2024];3(2):71-5. Disponible en: https://www.sciencedirect.com/science/article/pii/S2667164623000374
Eliner Y, Gulersen M, Kasar A, Lenchner E, Grünebaum A, Chervenak FA, et al. Maternal and neonatal complications in teen pregnancies: a comprehensive study of 661,062 patients. J Adolesc Health [Internet]. Jun 2022 [citado 2 Sep 2024];70(6):922-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35165030/
Davis K, Blake J. Social structure and fertility: an analytic framework. Econ Dev Cult Change [Internet]. Abr 1956 [citado 2 Sep 2024];4(3):211-35. Disponible en: https://u.demog.berkeley.edu/~jrw/Biblio/Eprints/%20D-F/davis.blake.1956_intermediate.variables.pdf
Bongaarts J. A framework for analyzing the proximate determinants of fertility. Popul Dev Rev. 1978;4(1):105-32.
Di Cesare M, Rodríguez-Vignoli J. Análisis micro de los determinantes de la fecundidad adolescente en Brasil y Colombia. Pap. poblac [Internet]. Jun 2006 [citado 2 Sep 2024];12(48):107-40. Disponible en: https://www.redalyc.org/pdf/112/11204806.pdf
Hernández-Sampieri R, Mendoza-Torres CP. Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta. 2da ed. Ciudad de México: Editorial Mc Graw Hill Education; 2023. 11. Huang B, Zhu Y, Usman M, Chen H. Semi-supervised learning with missing values imputation. J Knowledge-Based Sys [Internet]. Ene 2024 [citado 2 Sep 2024];284:111171. Disponible en: https://arxiv.org/pdf/2106.01708
Shaon SH, Karim T, Shakil S, Hasan Z. A comparative study of machine learning models with LASSO and SHAP feature selection for breast cancer prediction. Healthcare Analytics [Internet]. Dic 2024 [citado 2 Sep 2024];6:100353. Disponible en: https://www.researchgate.net/profile/Md-Shazzad-Hossain-Shaon/publication/381772917_A_comparative_study_of_machine_learning_models_with_LASSO_and_SHAP_feature_selection_for_breast_cancer_prediction/links/667e41caf3b61c4e2c94833f/A-Comparative-Study-of-Machine-Learning-Models-with-LASSO-and-SHAP-Feature-Selection-for-Breast-Cancer-Prediction.pdf
Ngiam KY, Khor W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol [Internet]. May 2019 [citado 2 Sep 2024];20(5):e262-73. Disponible en: https://www.sciencedirect.com/science/article/pii/S1470204519301494?via%3Dihub
Parzinger M, Hanfstaengl L, Sigg F, Spindler U, Wellisch U, Wirnsberger M. Comparison of different training data sets from simulation and experimental measurement with artificial users for occupancy detection — Using machine learning methods Random Forest and LASSO. Build Environ [Internet]. Sep 2022 [citado 2 Sep 2024];223:109313. Disponible en: https://www.sciencedirect.com/science/article/pii/S0360132322005352
Eddie D, Prindle J, Somodi P, Gerstmann I, Dilkina B, Saba SK, et al. Exploring predictors of substance use disorder treatment engagement with machine learning: The impact of social determinants of health in the therapeutic landscape. J Subst Use Addic Treat [Internet]. Sep 2024 [citado 2 Sep 2024];164:209435. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S2949875924001474
Obaido G, Mienye ID, Egbelowo OF, Emmanuel ID, Ogunleye A, Ogbuokiri B, et al. Supervised machine learning in drug discovery and development: algorithms, applications, challenges, and prospects. Mach Learn Applic [Internet]. Sep 2024 [citado 2 Sep 2024];17:100576. Disponibleen: https://www.sciencedirect.com/science/article/pii/S2666827024000525
Richardson E, Trevizani R, Greenbaum JA, Carter H, Nielsen M, Peters B. The receiver operating characteristic curve accurately assesses imbalanced datasets. Patterns [Internet]. 2024 [citado 4 Ene 2024];5(6):100994. Disponible en: https://www.cell.com/action/showPdf?pii=S2666-3899%2824%2900109-0
Asociación Médica Mundial. Declaración de Helsinki de la AMM. Principios éticos para las investigaciones médicas en seres humanos. Ratificada en la 64ª Asamblea General, Fortaleza, Brasil, octubre 2013. Helsinki: 18ª Asamblea Mundial; 1964 [citado 4 Ene 2024]. Disponible en: http://www.anmat.gov.ar/comunicados/HELSINSKI_2013.pdf
Martínez-Pérez JA, Pérez-Martín PS. La curva ROC. SEMERGEN [Internet]. Feb 2023 [citado 4 Ene 2024];49(1):e101821. Disponible en: https://static.elsevier.es/ficheros/7.pdf
Quezada MA, Tobón-Rivera A, Castrillón-Gómez OD. Minería de datos: una aplicación para determinar cuáles factores socio-económicos influyen en el embarazo adolescente. Inform Tecnol [Internet]. 2020 [citado 4 Ene 2024]:31(6):53-60. Disponible en: https://scielo.conicyt.cl/pdf/infotec/v31n6/0718-0764-infotec-31-06-53.pdf
Avelar-Jaime D, López-Ramírez M, Rivera-Romero CA, Guzmán-Cabrera R. Clasificación del Corpus BBC News Summary utilizando J48 en Weka. Jóvenes Cienc [Internet]. 2023 [citado 4 Ene 2024];25:[aprox. 6 p.]. Disponible en: https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/download/4212/3692/13737
Rosales-López JY. Determinantes próximos de la fecundidad adolescente en Honduras periodo 2011-2012 [Internet]. Tegucigalpa: Universidad Nacional Autónoma de Honduras; 2019 [citado 4 Ene 2024]. Disponible en: https://tzibalnaah.unah.edu.hn/bitstream/handle/123456789/11522/Determinantes%20pr%c3%b3ximos%20de%20la%20fecundidad%20adolescente%20en%20Honduras%20periodo%202011-2012.pdf?sequence=2&isAllowed=y
Fasula AM, Chia V, Murray CC, Brittain A, Tevendale H, Koumans EH. Socioecological risk factors associated with teen pregnancy or birth for young men: a scoping review. J Adolesc [Internet]. Jul 2019 [citado 4 Ene 2024];74(1):130-45. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S014019711930096X?via%3Dihub
Garza-Reyna D, Cruz-Villareal M, Alanís-Cruz A, Flores-Acosta CC, Ramírez-Colunga C, Soria-López J, et. al. 120. Sociodemographic and psychosocial factors associated with adolescent pregnancy. J. Pediatr. Adolesc. Gynecol. [Internet]. Abr 2024 [citado 4 Ene 2024];37(2):297-98. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1083318824001426?via%3Dihub
Asare BYA, Baafi D, Dwumfour-Asare B, Adam AR. Factors associated with adolescent pregnancy in the Sunyani Municipality of Ghana. Int. J. Afr. Nurs. Sci. [Internet]. 2019 [citado 4 Ene 2024];10:87-91. Disponible en: https://www.sciencedirect.com/science/article/pii/S2214139118300817
D’Añari-Cabrera JR. Factores biosociodemográficos asociados al embarazo precoz en adolescentes gestantes atendidas en el HRHDE, abril–mayo 2019 [Internet]. Arequipa: Universidad Nacional de San Agustín de Arequipa; 2019 [citado 4 Ene 2024]. Disponible en: https://repositorio.unsa.edu.pe/bitstreams/c66a10e4-9339-419d-830a-72810f74cde9/download
Rawat S, Rawat A, Kumar D, Sabitha A. Application of machine learning and data visualization techniques for decision support in the insurance sector. Int. J. Inf. Manag. Data Insights [Internet]. Nov 2021 [citado 4 Ene 2024];1(2):100012. Disponible en: https://www.sciencedirect.com/science/article/pii/S2667096821000057
Oermann EK, Rubinsteyn A, Ding D, Mascitelli J, Starke RM, Bederson JB, et al. Using a machine learning approach to predict outcomes after radiosurgery for central arteriovenous malformations. Scientific Reports [Internet]. 2016 [citado 4 Ene 2024];6:21161. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC4746661/pdf/srep21161.pdf
Asadi H, Kok HK, Looby S, Brennan P, O'Hare A, Thornton J. Outcomes and complications following endovascular treatment of brain arteriovenous malformations-a prognostication attempt using artficial intelligence. World Neurosurg [Internet]. Dic 2016 [citado 4 Ene 2024];96:562-9. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1878875016309160?via%3Dihub
Raj A, Dehingia N, Singh A, McDougal L, McAuley J. Application of machine learning to understand child marriage in India. 2020. SSM Popul Health [Internet]. 2020 [citado 4 Ene 2024];12:100687. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC7732880/pdf/main.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bernardo Céspedes Panduro, Zoraida Judith Huamán Gutiérrez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors who have publications with this journal accept the following terms of the License CC Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
The journal is not responsible for the opinions and concepts expressed in the works, which are the exclusive responsibility of the authors. The Editor, with the assistance of the Editorial Committee, reserves the right to suggest or request advisable or necessary modifications. Original scientific works are accepted for publication, as are the results of research of interest that have not been published or sent to another journal for the same purpose.
The mention of trademarks of specific equipment, instruments or materials is for identification purposes, and there is no promotional commitment in relation to them, neither by the authors nor by the editor.