Detección automatizada de factores determinantes del embarazo en la adolescencia

Autores/as

Palabras clave:

automatización, bases de datos estadísticos, embarazo en adolescencia, factores de riesgo

Resumen

Introducción: las adolescentes embarazadas tienen menos probabilidades de construir relaciones sentimentales estables, y más de sufrir trastornos emocionales. También, son más susceptibles a presentar diversas complicaciones durante el embarazo y el parto.

Objetivo: evaluar las técnicas de aprendizaje automático para determinar factores de riesgo del embarazo en adolescentes.

Métodos: se realizó una investigación con diseño correlacional causal. Los datos se obtuvieron de la Encuesta Demográfica y de Salud Familiar - ENDES 2021 Nacional y Departamental, que abarcó los años 2018 a 2020. En el momento de las entrevistas, su base de datos contenía información de 16 825 mujeres adolescentes peruanas de 12 a 19 años de edad, las cuales constituyeron el universo de estudio. Se implementaron nueve algoritmos: máquina de soporte vectorial, regresión logística binaria, árbol de decisión, refuerzo adaptativo, potenciación del gradiente, refuerzo de gradiente extremo, árboles extremadamente aleatorios, agregación de arranque, y bosque aleatorio. Se consideraron sus métricas como variables a tener en cuenta en la evaluación, la precisión, y el área bajo la curva.

Resultados: el algoritmo más preciso fue el bosque aleatorio (0,965825), seguido por la potenciación del gradiente (0,963744), el árbol de decisión, y las máquinas de vectores de soporte (0,963155, ambos).

Conclusiones: el bosque aleatorio fue la técnica más precisa; además de la identificación de los factores en cuestión, se distinguieron los tres más importantes. Este estudio es un precedente valioso para la aplicación de las técnicas de aprendizaje automático en la predicción de diversas variables necesarias para mejorar la gestión pública

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Bernardo Céspedes Panduro, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Doctor en Estadística Matemática. Docente Auxiliar. Investigador. Departamento de Estadística, Facultad de Ciencias Matemáticas

Zoraida Judith Huamán Gutiérrez, Universidad Nacional Mayor de San Marcos, Lima, Perú

Doctor en Estadística Matemática. Docente Principal. Investigador. Departamento de Estadística, Facultad de Ciencias Matemáticas,

Citas

Instituto Nacional de Estadística e Informática. Encuesta Demográfica y de Salud Familiar - ENDES 2021 Nacional y Departamental [Internet]. Lima: INEI; 2022 [citado 2 Sep 2024]. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1838/pdf/Libro.pdf

Buitrago-Ramírez F, Ciurana-Misol R, Fernández-Alonso MC, Tizón JL; Miembros del Grupo de Salud Mental. Prevención de los trastornos de la salud mental. Embarazo en la adolescencia. Aten Primaria [Internet]. Oct 2022 [citado 2 Sep 2024];54 Supl 1: 102494. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC9705218/pdf/main.pdf

Hernández-Cordero AL, Gentile A, Santos-Díaz E. Perspectivas teóricas para el análisis de la maternidad adolescente. Barataria [Internet]. 2019 [citado 2 Sep 2024];26:135-54. Disponible en: https://revistabarataria.es/web/index.php/rb/article/download/399/710/1546

Ranjbar A, Jahromi MS, Boujarzadeh B, Roozbeh N, Mehrnoush V, Darsareh F. Pregnancy, childbirth and neonatal outcomes associated with adolescent pregnancy. Gynecol Obstetr Clin Med [Internet]. Jun 2023 [citado 2 Sep 2024];3(2):100-5. Disponible en: https://www.sciencedirect.com/science/article/pii/S2667164623000131

Azimirad A. Pregnancy in adolescence: It is time to get ready for generations Z and Alpha. Gynecol Obstetr Clin Med [Internet]. Jun 2023 [citado 2 Sep 2024];3(2):71-5. Disponible en: https://www.sciencedirect.com/science/article/pii/S2667164623000374

Eliner Y, Gulersen M, Kasar A, Lenchner E, Grünebaum A, Chervenak FA, et al. Maternal and neonatal complications in teen pregnancies: a comprehensive study of 661,062 patients. J Adolesc Health [Internet]. Jun 2022 [citado 2 Sep 2024];70(6):922-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35165030/

Davis K, Blake J. Social structure and fertility: an analytic framework. Econ Dev Cult Change [Internet]. Abr 1956 [citado 2 Sep 2024];4(3):211-35. Disponible en: https://u.demog.berkeley.edu/~jrw/Biblio/Eprints/%20D-F/davis.blake.1956_intermediate.variables.pdf

Bongaarts J. A framework for analyzing the proximate determinants of fertility. Popul Dev Rev. 1978;4(1):105-32.

Di Cesare M, Rodríguez-Vignoli J. Análisis micro de los determinantes de la fecundidad adolescente en Brasil y Colombia. Pap. poblac [Internet]. Jun 2006 [citado 2 Sep 2024];12(48):107-40. Disponible en: https://www.redalyc.org/pdf/112/11204806.pdf

Hernández-Sampieri R, Mendoza-Torres CP. Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta. 2da ed. Ciudad de México: Editorial Mc Graw Hill Education; 2023. 11. Huang B, Zhu Y, Usman M, Chen H. Semi-supervised learning with missing values imputation. J Knowledge-Based Sys [Internet]. Ene 2024 [citado 2 Sep 2024];284:111171. Disponible en: https://arxiv.org/pdf/2106.01708

Shaon SH, Karim T, Shakil S, Hasan Z. A comparative study of machine learning models with LASSO and SHAP feature selection for breast cancer prediction. Healthcare Analytics [Internet]. Dic 2024 [citado 2 Sep 2024];6:100353. Disponible en: https://www.researchgate.net/profile/Md-Shazzad-Hossain-Shaon/publication/381772917_A_comparative_study_of_machine_learning_models_with_LASSO_and_SHAP_feature_selection_for_breast_cancer_prediction/links/667e41caf3b61c4e2c94833f/A-Comparative-Study-of-Machine-Learning-Models-with-LASSO-and-SHAP-Feature-Selection-for-Breast-Cancer-Prediction.pdf

Ngiam KY, Khor W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol [Internet]. May 2019 [citado 2 Sep 2024];20(5):e262-73. Disponible en: https://www.sciencedirect.com/science/article/pii/S1470204519301494?via%3Dihub

Parzinger M, Hanfstaengl L, Sigg F, Spindler U, Wellisch U, Wirnsberger M. Comparison of different training data sets from simulation and experimental measurement with artificial users for occupancy detection — Using machine learning methods Random Forest and LASSO. Build Environ [Internet]. Sep 2022 [citado 2 Sep 2024];223:109313. Disponible en: https://www.sciencedirect.com/science/article/pii/S0360132322005352

Eddie D, Prindle J, Somodi P, Gerstmann I, Dilkina B, Saba SK, et al. Exploring predictors of substance use disorder treatment engagement with machine learning: The impact of social determinants of health in the therapeutic landscape. J Subst Use Addic Treat [Internet]. Sep 2024 [citado 2 Sep 2024];164:209435. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S2949875924001474

Obaido G, Mienye ID, Egbelowo OF, Emmanuel ID, Ogunleye A, Ogbuokiri B, et al. Supervised machine learning in drug discovery and development: algorithms, applications, challenges, and prospects. Mach Learn Applic [Internet]. Sep 2024 [citado 2 Sep 2024];17:100576. Disponibleen: https://www.sciencedirect.com/science/article/pii/S2666827024000525

Richardson E, Trevizani R, Greenbaum JA, Carter H, Nielsen M, Peters B. The receiver operating characteristic curve accurately assesses imbalanced datasets. Patterns [Internet]. 2024 [citado 4 Ene 2024];5(6):100994. Disponible en: https://www.cell.com/action/showPdf?pii=S2666-3899%2824%2900109-0

Asociación Médica Mundial. Declaración de Helsinki de la AMM. Principios éticos para las investigaciones médicas en seres humanos. Ratificada en la 64ª Asamblea General, Fortaleza, Brasil, octubre 2013. Helsinki: 18ª Asamblea Mundial; 1964 [citado 4 Ene 2024]. Disponible en: http://www.anmat.gov.ar/comunicados/HELSINSKI_2013.pdf

Martínez-Pérez JA, Pérez-Martín PS. La curva ROC. SEMERGEN [Internet]. Feb 2023 [citado 4 Ene 2024];49(1):e101821. Disponible en: https://static.elsevier.es/ficheros/7.pdf

Quezada MA, Tobón-Rivera A, Castrillón-Gómez OD. Minería de datos: una aplicación para determinar cuáles factores socio-económicos influyen en el embarazo adolescente. Inform Tecnol [Internet]. 2020 [citado 4 Ene 2024]:31(6):53-60. Disponible en: https://scielo.conicyt.cl/pdf/infotec/v31n6/0718-0764-infotec-31-06-53.pdf

Avelar-Jaime D, López-Ramírez M, Rivera-Romero CA, Guzmán-Cabrera R. Clasificación del Corpus BBC News Summary utilizando J48 en Weka. Jóvenes Cienc [Internet]. 2023 [citado 4 Ene 2024];25:[aprox. 6 p.]. Disponible en: https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/download/4212/3692/13737

Rosales-López JY. Determinantes próximos de la fecundidad adolescente en Honduras periodo 2011-2012 [Internet]. Tegucigalpa: Universidad Nacional Autónoma de Honduras; 2019 [citado 4 Ene 2024]. Disponible en: https://tzibalnaah.unah.edu.hn/bitstream/handle/123456789/11522/Determinantes%20pr%c3%b3ximos%20de%20la%20fecundidad%20adolescente%20en%20Honduras%20periodo%202011-2012.pdf?sequence=2&isAllowed=y

Fasula AM, Chia V, Murray CC, Brittain A, Tevendale H, Koumans EH. Socioecological risk factors associated with teen pregnancy or birth for young men: a scoping review. J Adolesc [Internet]. Jul 2019 [citado 4 Ene 2024];74(1):130-45. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S014019711930096X?via%3Dihub

Garza-Reyna D, Cruz-Villareal M, Alanís-Cruz A, Flores-Acosta CC, Ramírez-Colunga C, Soria-López J, et. al. 120. Sociodemographic and psychosocial factors associated with adolescent pregnancy. J. Pediatr. Adolesc. Gynecol. [Internet]. Abr 2024 [citado 4 Ene 2024];37(2):297-98. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1083318824001426?via%3Dihub

Asare BYA, Baafi D, Dwumfour-Asare B, Adam AR. Factors associated with adolescent pregnancy in the Sunyani Municipality of Ghana. Int. J. Afr. Nurs. Sci. [Internet]. 2019 [citado 4 Ene 2024];10:87-91. Disponible en: https://www.sciencedirect.com/science/article/pii/S2214139118300817

D’Añari-Cabrera JR. Factores biosociodemográficos asociados al embarazo precoz en adolescentes gestantes atendidas en el HRHDE, abril–mayo 2019 [Internet]. Arequipa: Universidad Nacional de San Agustín de Arequipa; 2019 [citado 4 Ene 2024]. Disponible en: https://repositorio.unsa.edu.pe/bitstreams/c66a10e4-9339-419d-830a-72810f74cde9/download

Rawat S, Rawat A, Kumar D, Sabitha A. Application of machine learning and data visualization techniques for decision support in the insurance sector. Int. J. Inf. Manag. Data Insights [Internet]. Nov 2021 [citado 4 Ene 2024];1(2):100012. Disponible en: https://www.sciencedirect.com/science/article/pii/S2667096821000057

Oermann EK, Rubinsteyn A, Ding D, Mascitelli J, Starke RM, Bederson JB, et al. Using a machine learning approach to predict outcomes after radiosurgery for central arteriovenous malformations. Scientific Reports [Internet]. 2016 [citado 4 Ene 2024];6:21161. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC4746661/pdf/srep21161.pdf

Asadi H, Kok HK, Looby S, Brennan P, O'Hare A, Thornton J. Outcomes and complications following endovascular treatment of brain arteriovenous malformations-a prognostication attempt using artficial intelligence. World Neurosurg [Internet]. Dic 2016 [citado 4 Ene 2024];96:562-9. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1878875016309160?via%3Dihub

Raj A, Dehingia N, Singh A, McDougal L, McAuley J. Application of machine learning to understand child marriage in India. 2020. SSM Popul Health [Internet]. 2020 [citado 4 Ene 2024];12:100687. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC7732880/pdf/main.pdf

Publicado

15-01-2025

Cómo citar

1.
Céspedes Panduro B, Huamán Gutiérrez ZJ. Detección automatizada de factores determinantes del embarazo en la adolescencia. Mediciego [Internet]. 15 de enero de 2025 [citado 30 de enero de 2025];31:e4001. Disponible en: https://revmediciego.sld.cu/index.php/mediciego/article/view/4001

Número

Sección

Artículo original